

Pulsed High Magnetic Fields for Neutron Scattering Science

Chuck Mielke

August 21, 2014

State-of-the-art at NHMFL-PFF

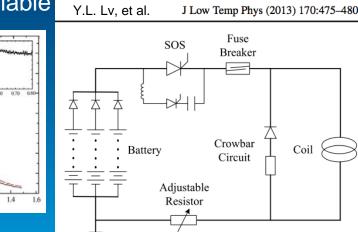
- Pulsed Magnet Capabilities
 - 100 Tesla Multi-shot
 - 300 Tesla Single Turn
 - 60 Tesla Controlled Waveform
 - 65 Tesla milli-second
 - Instrumentation
 - Liquid Helium-3 temperatures (~350 mK base)
 - Magnetization, resistivity, optical transmission, optical spectroscopy, dilation, specific heat, pulsed echo ultrasound, contactless conductivity, etc.

170 T shot (Single Turn @ NHMFL)

- Management of stress and heat
 - 100T has pressures ~3-4GPa
 - Wire UTS ~1.4 GPa at best (CuNb)
 - Conductivity ~60-70% IACS
 - T max < 450 K (insulation degradation)
 - All NHMFL-PFF Magnet are internally reinforced
- Rise times
 - Vary from 2 usec to 1 sec (most 10 mSec)
 - Sample heating -> mm to um sized samples
 - Slower is better

Pulsed Power Supply Basics

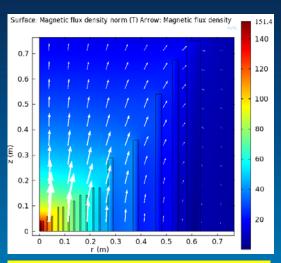
- Capacitor banks
 - Most common pulsed power supply
 - Common Energy scale is MJ
 - Nojiri style is 30 kJ
 - 50 MJ at Dresden
 - 14 MJ at Toulouse
 - 15 MJ at Wuhan
 - Voltage ranges typically 10-20 kV
 - Peak current ~ 100 kA



Pulsed Power Supplies cont.

- Generator based inertial storage system
 - Large energy (600 2000 MJ at NHMFL)
 - Advantage is that the flow of energy can be stopped
 - Most complex maintenance
- Battery based systems
 - Wuhan has just installed a ~1000 cell system
 - Powers a 30 T coil with a 500 msec pulse
 - Lower peak currents
 - Difficult to stop

Scalable

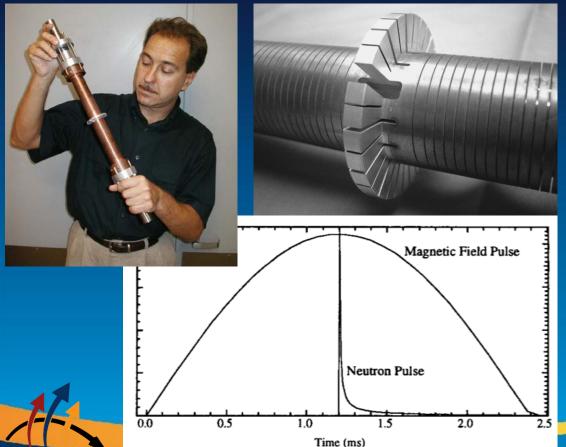

NHMFL's 100 T magnet

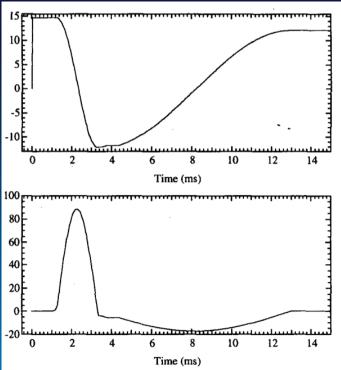
Largest system, World Record fields (non-

destructive)

240 MJ needed for a shot

150T with 50T outsert:
Magnetic energy: 690 MJ
Maximum outsert power: ~
1500 MW



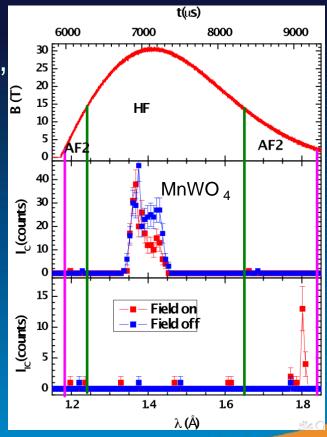


Pulsed Magnet for Neutron Scattering

NHMFL-LANSCE project ca. 1997

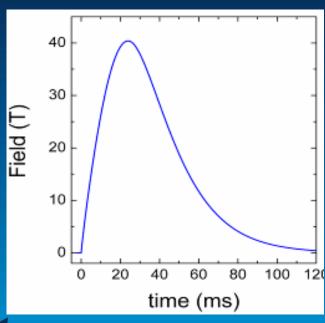
- M. Bird et al., IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 16, NO. 2, JUNE 2006.
- H. Boenig et al., Digest of Technical Papers. 12th IEEE International Conference Vol. 1 (1999).

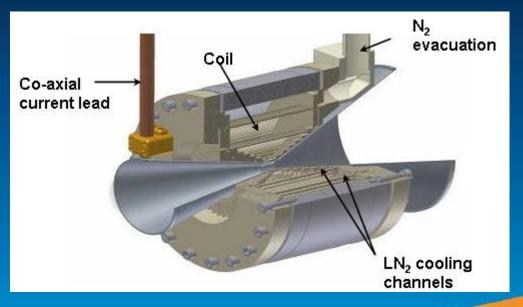
"Nojiri" magnets



- Very cost effective
 - Rep rate is 5-30 minutes
 - Demonstrated "proof of principle"

http://neutrons.ornl.gov/conf/nobugs2010/Monday%20afternoon/NOBUGS32_Kohl.pdf


40 T Polyhelix design in Grenoble


- LN2 cooled design
 - 1 MJ capacitor bank
 - 7 minute rep time

PRO: Simple magnet design

CON: Complex cryostat

LA-UR-14-26538

Summary

- Pulsed Magnets are an economical tool for high magnetic field experiments
 - 1000 shot magnets are feasible (40 T range)
 - 10⁷ shot magnets are very challenging
- Repetitive systems are feasible but expensive
 - A 30 T 1-2 second repetition rate system was designed but not fully realized at LANL
 - Power consumption will be of order 150 kW
- Signal Collection must take place in ~1/100 of pulse
 - What is feasible for neutron detectors?

